From: | To: |
The formula to calculate Voltage Drop (V) from Current (A), Wire Length (m), and Wire Resistance (Ω/km) is:
For Single Phase:
\[ V_{drop} = I \times 2 \times L \times \frac{R}{1000} \]
For Three Phase:
\[ V_{drop} = \sqrt{3} \times I \times L \times \frac{R}{1000} \]
Where:
Voltage drop is the reduction in voltage in an electrical circuit between the source and load. It is caused by the resistance of the wire and the current flowing through it. Excessive voltage drop can cause electrical devices to malfunction or operate inefficiently.
Let's assume the following values:
Using the formula for Single Phase:
\[ V_{drop} = 10 \times 2 \times 100 \times \frac{0.5}{1000} \]
\[ V_{drop} = 1 \text{ V} \]
The Voltage Drop (V) is 1 V.
Current (A) | Wire Length (m) | Wire Resistance (Ω/km) | Voltage Drop (V) |
---|---|---|---|
5 | 100 | 0.5 | 0.500 |
10 | 100 | 0.5 | 1.000 |
15 | 100 | 0.5 | 1.500 |
20 | 100 | 0.5 | 2.000 |
25 | 100 | 0.5 | 2.500 |
30 | 100 | 0.5 | 3.000 |
35 | 100 | 0.5 | 3.500 |
40 | 100 | 0.5 | 4.000 |
45 | 100 | 0.5 | 4.500 |
50 | 100 | 0.5 | 5.000 |
55 | 100 | 0.5 | 5.500 |
60 | 100 | 0.5 | 6.000 |
65 | 100 | 0.5 | 6.500 |
70 | 100 | 0.5 | 7.000 |
75 | 100 | 0.5 | 7.500 |
80 | 100 | 0.5 | 8.000 |
85 | 100 | 0.5 | 8.500 |
90 | 100 | 0.5 | 9.000 |
95 | 100 | 0.5 | 9.500 |
100 | 100 | 0.5 | 10.000 |