From: | To: |
The formula to calculate Volt-Amps (VA) from Power (W) and Power Factor (PF) is:
\[ S (\text{VA}) = \frac{P (\text{W})}{PF} \]
Where:
Watt (W) is a unit of power, representing the rate of energy usage per time unit. Volt-Ampere (VA) is a unit of apparent power, representing the product of voltage and current in a circuit. The conversion from watts to volt-amperes depends on the power factor of the circuit.
Let's assume the following values:
Using the formula:
\[ S = \frac{1000}{0.8} \]
\[ S = 1250 \text{ VA} \]
The Apparent Power (VA) is 1250 VA.
Power (W) | Power Factor (PF) | Apparent Power (VA) |
---|---|---|
100 | 0.95 | 105.263 |
200 | 0.95 | 210.526 |
300 | 0.95 | 315.789 |
400 | 0.95 | 421.053 |
500 | 0.95 | 526.316 |
600 | 0.95 | 631.579 |
700 | 0.95 | 736.842 |
800 | 0.95 | 842.105 |
900 | 0.95 | 947.368 |
1000 | 0.95 | 1,052.632 |
1100 | 0.95 | 1,157.895 |
1200 | 0.95 | 1,263.158 |
1300 | 0.95 | 1,368.421 |
1400 | 0.95 | 1,473.684 |
1500 | 0.95 | 1,578.947 |
1600 | 0.95 | 1,684.211 |
1700 | 0.95 | 1,789.474 |
1800 | 0.95 | 1,894.737 |
1900 | 0.95 | 2,000.000 |
2000 | 0.95 | 2,105.263 |
2100 | 0.95 | 2,210.526 |
2200 | 0.95 | 2,315.789 |
2300 | 0.95 | 2,421.053 |
2400 | 0.95 | 2,526.316 |
2500 | 0.95 | 2,631.579 |
2600 | 0.95 | 2,736.842 |
2700 | 0.95 | 2,842.105 |
2800 | 0.95 | 2,947.368 |
2900 | 0.95 | 3,052.632 |
3000 | 0.95 | 3,157.895 |
3100 | 0.95 | 3,263.158 |
3200 | 0.95 | 3,368.421 |
3300 | 0.95 | 3,473.684 |
3400 | 0.95 | 3,578.947 |
3500 | 0.95 | 3,684.211 |
3600 | 0.95 | 3,789.474 |
3700 | 0.95 | 3,894.737 |
3800 | 0.95 | 4,000.000 |
3900 | 0.95 | 4,105.263 |
4000 | 0.95 | 4,210.526 |
4100 | 0.95 | 4,315.789 |
4200 | 0.95 | 4,421.053 |
4300 | 0.95 | 4,526.316 |
4400 | 0.95 | 4,631.579 |
4500 | 0.95 | 4,736.842 |
4600 | 0.95 | 4,842.105 |
4700 | 0.95 | 4,947.368 |
4800 | 0.95 | 5,052.632 |
4900 | 0.95 | 5,157.895 |
5000 | 0.95 | 5,263.158 |